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Outline

• Some History
– Large Arrays meeting Cargese ’84
– TRIO, COSMIC, Fiber-Linked COSMIC, SAMSI
– OVLA (separate article)
– Other

• SIM
– Astrometry
– SIM Instrument

• TPF
– Nulling
– TPF Instrument (several possibilities)
– ST-3 precurser (2 s/c)

• LISA
– Gravity Waves
– LIGO
– LISA Instrument
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Reference for 20 yr old Ideas

• Colloquium on Kilometric Optical Arrays in Space, 23-25 October, 1984, Cargese, 
Corsica, France

• TRIO, Triangle, SAMSI, COSMIC, LAGOS
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TRIO (Labeyrie et al)

A. Labeyrie, B. Authier, Th. De Graauw, E. Kibblewhite, G. Weigelt
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TRIO Variants

E. B. Crellin

P. Connes, C. Froehly, P. Facq
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TRIANGLE version of TRIO (F. Vakili)
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COSMIC
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Spacecraft Array for Michelson Spatial 
Interfeormetry (SAMSI)

R. Stachnik and D. Gezari
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LAGOS (early LISA)

J. Faller, P. Bender, J. Hall, D. Hils, M. Vincent
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Lunar Optical Very Large Array (Labeyrie)
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JPL Study: MUSIC
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JPL Study: Clementine II Interferometer
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Space Interferometry Mission (SIM)
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Hipparcos 
Positional 
Error Circle
(0.64 mas)

Science Objective - Astrometric Precision

HST Positional Error 
Circle (~1.5 mas)

Microarcsecond precision opens a new window to a multitude of 
phenomena observable with SIM. Reflex Motion of Sun from 

100pc (axes 100 µas)

Parallactic
Displacement 
of Galactic 
Center

Apparent Gravitational 
Displacement of a 
Distant Star due to 
Jupiter 1 degree away

SIM Positional 
Error Circle

(4µas)

.
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Science Objectives

- Perform a search for other planetary systems by surveying 2000 
nearby stars for astrometric signatures of planetary companions

− Survey 200 nearby stars for orbiting planets down to terrestrial-type 
masses

- Improve best current catalog of star positions by >100x and extend to 
fainter stars to allow extension of stellar knowledge to include our 
entire galaxy

- Study dynamics and evolution of stars and star clusters in our galaxy 
to understand how our galaxy was formed and how it will evolve.

- Calibrate luminosities of important stars and cosmological distance 
indicators to improve our understanding of stellar processes and to 
measure precise distance in the distant universe
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Measuring fringe positions with an Interferometer  

external delay
- internal delay0

detected
intensity

The peak of the interference pattern occurs when the 
internal path delay equals the external path delay

detector

Delay LineBeam Combiner

Siderostat 2

External path delay
x = B sin(θ)

Internal path delay

Siderostat 1
Baseline Vector

θ
dire

ctio
n to

 sta
r
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Internal Metrology

Laser metrology gauge measures internal delay
(adjusted by delay line, sensed by fringe detector)

Laser
Gauge

detector

delay line

beam combiner

Siderostat 1 Siderostat 2

Internal path delay

optical fiducial optical fiducial

Laser path retraces starlight path from combiner to telescopes



11 July 2003    pg 18Space Interferometers Stuart Shaklan

External Metrology

Science baseline

Guide Collector 2

Science Collector 1

Guide baseline

External metrology is used to measure 
• the science interferometer baseline with respect to the guide 
interferometer
• measure the science interferometer baseline length

Guide Collector 1

Science Collector 2
SIM Fiducial
Corner Cube
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SIM ‘Shared Baseline’ Reference Design

• Continuing development of our Reference Design is a “work-in-progress”
• We are addressing the residual issues and looking for ways to reduce risk as we are moving out in our detailed 

design
• The design has two OPERATIONAL interferometer baselines

– Two redundant science baselines 
– A shared guide baseline

Current version (L15x) - Shared Baseline

Science Baseline 1Science Baseline 1

Science Baseline 2

Guide Baseline

Corner Cube
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Flight System

Solar 
Array

Spacecraft 
Backpack

HGA

PSS

Instrument 
Backpack
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Shared Baseline Interferometer Configuration

10 Meter Science baselines

8.75 Meter Guide baselines

Bay 2

Bay 1

Astrometric
Beam Combiners (4)

Optical
Delay Lines (8)
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External Metrology Truss

Science
Compressors (4)

Beam Launchers (19)

Siderostats (8)
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POP02 Option 1 Project Schedule
LRD 12/09

9 May 2002    J.C. Marr  - 22SIM Qtly Project Status

ATLO = Assy, Test & Launch Ops     ERB = External Review Board     PMSR = Preliminary Mission & Systems Review    SRR = System Requirements Review
CA = Confirmation Assessment IA = Independent Assessment      NAR = Non Advocate Review CRR = Confirmation Readiness Review (JPL PMC)
CDR = Critical Design Review I&T = Integration & Test PDR = Preliminary Design Review ICR = Initial Confirmation Review (Code S)
CR = Confirmation Review (NASA PMC) NASA PMC = Programmatic Management Council (APP = Approved)

Tech. Dev.

FY’98 FY’99 FY’00 FY’01 FY’02 FY’03 FY’04 FY’05 FY’06

Phase A

Phase B

Select Ind. 
Partners

FY’07

Design 
Selection

3/01
ERB

IA

12/09
Launch

9/06
CDR

AO
Science Team

Selection

FY’08

Phase C/D

FY’09
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SRR
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PMC 
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FY’10

13-year Phase E
Starts in 01/10
Ends in 06/23

NOTE:  This has been our working schedule
Since May 2001
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Terrestrial Planet Finder

• Objectives:
– Direct detection of earth-like 

planets
– Imaging astrophysics

• Features:
– Mid-IR nuller
– Separations of ~ few meters to 

1 km
– 3.5 m primaries
– L2 or Earth-trailing orbit

Formation Flying design shown here is one of 
three architectures currently being studied 
(also structurally connected mid-IR 
interferometer & visible coronagraph)

http://planetquest/TPF/tpf_index.html
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DARWIN

• Objectives:
– Direct detection of earth-like planets
– Imaging astrophysics

• Features:
– Mid-IR nuller
– 6 x 1.5 m collectors
– L2 orbit

• Similar goals to TPF

http://sci.esa.int/home/darwin/index.cfm
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Goals for Terrestrial Planet Finder

• Primary Goal: Direct detection of emitted or reflected radiation from Earth-
like planets located in the habitable zones of nearby solar type stars. 
– Determine orbital and physical properties 
– Characterize atmospheres and search for bio-markers
– Search a statistically meaningful sample of stars (~150)

• The Broader Scientific Context: Comparative Planetology
– Understand properties of all planetary system constituents, e.g. gas giant 

planets, terrestrial planets and debris disks.
• Astrophysics: An observatory with the power to detect an Earth orbiting a 

nearby star will be able to collect important new data on many targets of 
general astrophysical interest.

• This and subsequent TPF charts thanks to Chris Lindensmith of JPL!!
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Terrestrial Planet Finder (TPF)

• Detecting light  from planets beyond solar 
system is hard:

– Planet signal is weak but detectable (few 
photons/sec/m2)

– Star emits million to billion more than 
planet

– Planet within  1 AU of star
– Dust in target solar system >300 brighter 

than planet
• Finding a firefly next to a searchlight on a foggy 

night

>109
>106
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The TPF Synthesized Image

Signal: Star + 
Dust + Planet

Interferometer fringes
projected on the signal

Response to a planet as 
the linear array is 
rotated through 360 
degrees.
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Interferometer Technology

Cryogenic 
Structures and 
Modeling 
Technology

Advanced 
Nulling 

Technology

Interferometer 
Point Designs

Structurally Connected 
Interferometer Testbed

Cryogenic 
Delay Line

Achromatic 
Nulling 
Testbed

Mid-Infrared 
Spatial Filter 
Technology

Phasing System Testbed
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Formation Flying Technology

Interferometer 
Point Designs

Inherited Formation 
Flying Technologies

Formation 
Sensor 
Technology

Formation 
Control 
Testbed

Formation Algorithms 
and Simulation Testbed

SPHERES Flight 
Experiments

Thermal Shield 
Technology
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Life Finder, Planet Imager

• Life Finder
– Spectral features in planet 

atmospheres strongly indicative of 
life

– 4 x 25 m apertures
– 100 m baselines

• Planet Imager
– 25 x 25 pixels over earth-like planet 

@ 10 pc
– 25 x 40 m apertures
– 400 km baselines 
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Cover

http://lisa.jpl.nasa.gov

Jet Propulsion Laboratory
California Institute of Technology

LISA
Laser Interferometer
Space Antenna
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Gravitational Waves

•• Prediction of Einstein’s General Theory of Relativity.Prediction of Einstein’s General Theory of Relativity.

••GWsGWs propagate through spacepropagate through space--time at the speed of lighttime at the speed of light

••Caused by catastrophic astronomical eventsCaused by catastrophic astronomical events

•• Super novaeSuper novae

•• Coalescing binary systems (neutron stars, massive Coalescing binary systems (neutron stars, massive 
black holes, etc)black holes, etc)

•• Stochastic background (remnants of bigStochastic background (remnants of big--bang)bang)

•• GWsGWs have not yet been directly observed.have not yet been directly observed.
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The Effect of a GW on a Ring of Particles

Space time is very, very stiff  Space time is very, very stiff  -->  >  GWsGWs contain contain 
enormous amounts of energy with very little observable enormous amounts of energy with very little observable 
results.results.

Fractional length change of space is termed “strain” and Fractional length change of space is termed “strain” and 
is expected to be of the order 10is expected to be of the order 10--21 21 to 10to 10--2323..
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LISA/LIGO Sensitivity
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GW Detectors
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Spacecraft Formation
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Spacecraft Orbits
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Effect of Arm Length on Sensitivity
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Payload Layout

• Two independent instruments
• 30 cm telescopes, 1 W lasers
• Measurement noise 20 pm/√Hz

• Telescope pointing
- Angle changes ±0.5° over year
- Use flexures (HST heritage)
- Steering mechanism (SIM heritage)

• Drag-free control law with two proof masses
- Apply accelerations of 10-10 m/s2
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Spacecraft and Payload

• Two independent instruments
• 30 cm telescopes, 1 W lasers
• Measurement noise 20 pm/√Hz
• Freely-float test mass

• Telescope pointing changes ±0.5°
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Launch Configuration

Spacecraft design constrained by volume of Launch vehicle shroud
Delta-II preferred because of lower cost

2.7 m
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Optical Bench Layout
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Conclusion

• 20 years ago, scientists foresaw general purpose interferometry missions, mainly 
imaging with ultra-high resolution (LAGOS/LISA is the exception)

• Current missions are focused:
– SIM (2010 launch) will perform astrometry, with only limited imaging capability
– TPF (~2015 launch) will search for and characterizes planets,
– LISA (2011 launch) will measure gravity waves

• Development times are long
– SIM started in 1990, TPF was first studied in ~ 1995, LISA in 1984

• What will the future hold?  This depends on
– The ultimate limits of ground-based technology (e.g. OHANA)
– The questions opened by space interferometers

• Will we detect Earth-like planets and signs of life?
– How we view our place in the Universe

• Planet imagers – what do the exo-planets look like?
• Stellar imagers – what will be the fate of our solar system?
• Different energy levels – what are the physical processes that we can only study with 

high resolution at X-ray, sub-millimeter, etc. 


